

Impact Fee Calculation

Today's focus

Calculated Impact Fee = $\frac{Cost \ of \ Eligible \ CIP}{Added \ EDUs}$

- LUAP provides number of added EDUs
- CIP provides cost of eligible capital improvements
 - Extensions and expansions
 - Pipeline upsizing
- Study period for LUAP and CIP is 10 years
 - How many EDUs are expected to be added in 10-year study period?
 - What is the cost of the capacity that is required to serve these added EDUs?

Impact Fee Components

Water Supply

Water Delivery Flow

Wastewater Collection

Wastewater Treatment

Water Delivery / System Development Components

Elevated Storage Tanks

Transmission Mains

Ground Storage Tanks

High Service and Booster Pump Stations

Water Delivery / System Development Value – Well Pumps

Existing value of well pumps is \$123,454,536

- Valuation method is Original Cost (OC)
- Value is not depreciated
- Value excludes contributed assets

Value of well pumps CIP projects is \$17,060,000

- Value is in 2018 dollars
- Value does not include financing costs

Allocation is based on maximum day demand (MDD)

- 2018 population is 1,851,348; 2028 population is 2,190,178
- Average Day Demand (ADD) = $\frac{290 \text{ gpd per EDU}}{2.39 \text{ persons per EDU}}$
- ADD = 121 gallons per capita per day (gpcd)
- Maximum day peaking factor (MDPF) is 1.78 (Water Infrastructure Plan)
- MDD = ADD * MDPF * Population
- 2018 MDD = 121 gpcd * 1.78 * 1,851,348 = 398.7 mgd
- 2028 MDD = 121 gpcd * 1.78 * 2,190,178 = 471.7 mgd
- $Study\ Period\ Demand = 2028\ MDD 2018\ MDD$
- Study Period Demand = $471.7 \, mgd 398.7 \, mgd = 73.0 \, mgd$

Total available capacity is 171.9 mgd

- $2018 \ Capacity = 533.6 \ mgd$
- Existing Available Capacity = 2018 Capacity -2018 MDD
- Existing Available Capacity = 533.6 mgd 398.7 mgd = 134.9 mgd
- Future CIP Capacity = 37.0 mgd
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 134.9 mgd + 37.0 mgd = 171.9 mgd

Impact fee eligible allocation is 42.5%

- $Allocation = \frac{Study\ Period\ Demand}{Total\ Available\ Capacity}$
- Allocation = $\frac{73.0 \, mgd}{171.9 \, mgd}$ = **42.5**%

Water Delivery / System Development Components

Well Pumps

Elevated Storage Tanks

Transmission Mains

Ground Storage Tanks

High Service and Booster Pump Stations

Water Delivery / System Development Value – Elevated Storage Tanks

Existing value of elevated storage tanks is \$72,527,322

- Valuation method is Original Cost (OC)
- Value is not depreciated
- Value excludes contributed assets

Value of elevated storage tanks CIP projects is \$41,381,885

- Value is in 2018 dollars
- Value does not include financing costs

Allocation is based on TCEQ requirements

- TCEQ requires minimum 100 gallons per connection of EST capacity, but WIP may recommend a higher minimum for each service area
- 1 connection = 1.64 EDUs
- EST Capacity Requirement = Minimum gal/conn * $\frac{No. EDUS}{1.64}$
- Study Period Requirement = 2028 EST Capacity Requirement 2018 EST Capacity Requirement

High Service Area Study Period Requirement

- 2018 EST Capacity Requirement = $219 \frac{gal}{conn} * \frac{23,755 EDU}{1.64} =$
- 2028 EST Capacity Requirement = $219 \frac{gal}{conn} * \frac{30,600 EDU}{1.64} = 4.1 MG$
- Study Period Requirement = $4.09 MG 3.17 MG = \mathbf{0.9} MG$

Total available capacity for High Service Area is 7.2 MG

- $2018 \ Capacity = 5.4 \ MG$
- Existing Available Capacity = 2018 Capacity 2018 EST Capacity Requirement
- Existing Available Capacity = 5.4 MG 3.2 MG = 2.2 MG
- Future CIP Capacity = 5.0 MG
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 2.2 MG + 5.0 MG = 7.2 MG

Impact fee eligible allocation for High Service Area is 12.7%

- $Allocation = \frac{Study\ Period\ Requirement}{Total\ Available\ Capacity}$
- Allocation = $\frac{0.9 MG}{7.2 MG}$ = 12.7%

Middle Service Area Study Period Requirement

- 2018 EST Capacity Requirement = $136 \frac{gal}{conn} * \frac{262,228 EDU}{1.64} =$ **21.7 MG**
- 2028 EST Capacity Requirement = $136 \frac{gal}{conn} * \frac{318,707 EDU}{1.64} =$ **26.4 MG**
- Study Period Requirement = 26.4 MG 21.7 MG = 4.7 MG

Total available capacity for Middle Service Area is 21.9 MG

- $2018 \ Capacity = 40.6 \ MG$
- Existing Available Capacity = 2018 Capacity 2018 EST Capacity Requirement
- Existing Available Capacity = 40.6 MG 21.7 MG = 18.9 MG
- Future CIP Capacity = 3.0 MG
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 18.9 MG + 3.0 MG = 21.9 MG

Impact fee eligible allocation for Middle Service Area is 21.4%

- $Allocation = \frac{Study\ Period\ Requirement}{Total\ Available\ Capacity}$
- Allocation = $\frac{4.7 MG}{21.9 MG}$ = **21.4**%

Low Service Area Study Period Requirement

- 2018 EST Capacity Requirement = $103 \frac{gal}{conn} * \frac{488,639 EDU}{1.64} = 30.7 MG$
- 2028 EST Capacity Requirement = $103 \frac{gal}{conn} * \frac{567,086 EDU}{1.64} = 35.6 MG$
- Study Period Requirement = 35.6 MG 30.7 MG = 4.9 MG

Total available capacity for Low Service Area is 22.0 MG

- $2018 \ Capacity = 48.2 \ MG$
- Existing Available Capacity = 2018 Capacity 2018 EST Capacity Requirement
- Existing Available Capacity = 48.2 MG 30.7 MG = 17.5 MG
- Future CIP Capacity = 4.5 MG
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 17.5 MG + 4.5 MG = 22.0 MG

Impact fee eligible allocation for Low Service Area is 22.4%

•
$$Allocation = \frac{Study\ Period\ Requirement}{Total\ Available\ Capacity}$$

• Allocation =
$$\frac{4.9 \, MG}{22.0 \, MG}$$
 = 22.4%

Water Delivery / System Development Components

Well Pumps

Elevated Storage Tanks

Transmission Mains

High Service and Booster Pump Stations

Water Delivery / System Development Value – Ground Storage Tanks

Existing value of ground storage tanks is \$65,495,466

- Valuation method is Original Cost (OC)
- Value is not depreciated
- Value excludes contributed assets

Value of ground storage tanks CIP projects is \$29,421,250

- Value is in 2018 dollars
- Value does not include financing costs

Allocation is based on TCEQ requirements

- TCEQ requires minimum 200 gallons per connection of storage capacity, but WIP may recommend a higher minimum for each service area
- 1 connection = 1.64 EDUs
- GST Capacity Requirement = Minimum gal/conn * $\frac{No. EDUs}{1.64}$
- Study Period Requirement = 2028 GST Capacity Requirement 2018 GST Capacity Requirement

High Service Area Study Period Requirement

- 2018 GST Capacity Requirement = $13 \frac{gal}{conn} * \frac{23,755 EDU}{1.64} =$ • 0.19 MG
- 2028 GST Capacity Requirement = $13 \frac{gal}{conn} * \frac{30,600 EDU}{1.64} =$ • 0.24 MG
- Study Period Requirement = 0.24 MG 0.19 MG = **0.05 MG**

Total available capacity for High Service Area is 10.6 MG

- $2018 \ Capacity = 10.8 \ MG$
- Existing Available Capacity = 2018 Capacity 2018 GST Capacity Requirement
- Existing Available Capacity = 10.8 MG 0.19 MG = 10.6 MG
- Future CIP Capacity = 0.0 MG
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- $Total \ Available \ Capacity = 10.6 \ MG + 0.0 \ MG = 10.6 \ MG$

Impact fee eligible allocation for High Service Area is 0.5%

•
$$Allocation = \frac{Study\ Period\ Requirement}{Total\ Available\ Capacity}$$

• Allocation =
$$\frac{0.05 MG}{10.6 MG}$$
 = **0.5**%

Middle Service Area Study Period Requirement

- 2018 GST Capacity Requirement = $64 \frac{gal}{conn} * \frac{262,228 EDU}{1.64} = 10.2 MG$
- 2028 GST Capacity Requirement = $64 \frac{gal}{conn} * \frac{318,707 EDU}{1.64} =$
- Study Period Requirement = 12.4 MG 10.2 MG = 2.2 MG

Total available capacity for Middle Service Area is 69.8 MG

- $2018 \ Capacity = 67.5 \ MG$
- Existing Available Capacity = 2018 Capacity 2018 GST Capacity Requirement
- Existing Available Capacity = 67.5 MG 10.2 MG = 57.3 MG
- Future CIP Capacity = 12.5 MG
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 57.3 MG + 12.5 MG = 69.8 MG

Impact fee eligible allocation for Middle Service Area is 3.2%

•
$$Allocation = \frac{Study\ Period\ Requirement}{Total\ Available\ Capacity}$$

• Allocation =
$$\frac{2.2 MG}{69.8 MG}$$
 = 3.2%

Low Service Area Study Period Requirement

- 2018 GST Capacity Requirement = $97 \frac{gal}{conn} * \frac{488,639 EDU}{1.64} =$ **28.9 MG**
- 2028 GST Capacity Requirement = $97 \frac{gal}{conn} * \frac{567,086 EDU}{1.64} = 33.5 MG$
- Study Period Requirement = 33.5 MG 28.9 MG = 4.6 MG

Total available capacity for Low Service Area is 72.7 MG

- $2018 \ Capacity = 100.6 \ MG$
- Existing Available Capacity = 2018 Capacity 2018 EST Capacity Requirement
- Existing Available Capacity = 100.6 MG 28.9 MG = 71.7 MG
- Future CIP Capacity = 1.0 MG
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 71.7 MG + 1.0 MG = 72.7 MG

Impact fee eligible allocation for Low Service Area is 6.4%

•
$$Allocation = \frac{Study\ Period\ Requirement}{Total\ Available\ Capacity}$$

• Allocation =
$$\frac{4.6 MG}{72.7 MG}$$
 = **6.4**%

Water Delivery / System Development Components

Well Pumps

Elevated Storage Tanks

Transmission Mains

Ground Storage Tanks

High Service and Booster Pump Stations

Water Delivery / System Development Value – Pump Stations

Existing value of pump stations is \$149,832,114

- Valuation method is Original Cost (OC)
- Value is not depreciated
- Value excludes contributed assets

Value of pump station CIP projects is \$36,502,193

- Value is in 2018 dollars
- Value does not include financing costs

Allocation is based on maximum hour demand (MHD)

- Average day demand (ADD) and maximum hour peaking factor (MHPF) are found in Water Infrastructure Plan
- Average Day Demand $(ADD) = 121 \ gpcd$
- $Maximum\ Hour\ Peaking\ Factor\ (MHPF) = 3.31$
- MHD = ADD * MHPF * Population
- Study Period Demand = 2028 MHD 2018 MHD

High Service Area Study Period Requirement

- 2018 MHD = 121 gpcd * 3.31 * 56,774 = 22.7 mgd
- 2028 MHD = 121 gpcd * 3.31 * 73,134 = 29.3 mgd
- Study Period Demand = 29.3 mgd 22.7 mgd = 6.6 mgd

Total available capacity for High Service Area is 41.0 mgd

- $2018 \ Capacity = 60.9 \ mgd$
- Existing Available Capacity = 2018 Capacity 2018 MHD
- Existing Available Capacity = 60.9 mgd 22.7 mgd = 38.2 mgd
- Future CIP Capacity = 2.8 mgd
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 38.2 mgd + 2.8 mgd = 41.0 mgd

Impact fee eligible allocation for High Service Area is 16.0%

- $Allocation = \frac{Study\ Period\ Demand}{Total\ Available\ Capacity}$
- $Allocation = \frac{6.6 \, mgd}{41.0 \, mgd} = 16.0\%$

Middle Service Area Study Period Requirement

- 2018 MHD = 121 gpcd * 3.31 * 626,725 =**251.0 mgd**
- 2028 MHD = 121 gpcd * 3.31 * 761,709 = 305.1 mgd
- $Study\ Period\ Demand = 305.1\ mgd 251.0\ mgd = 54.1\ mgd$

Total available capacity for Middle Service Area is 214.0 mgd

- $2018 \ Capacity = 440.0 \ mgd$
- Existing Available Capacity = 2018 Capacity 2018 MHD
- Existing Available Capacity = 440.0 mgd 251.0 mgd = 189.0 mgd
- Future CIP Capacity = 25.0 mgd
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 189.0 mgd + 25.0 mgd = 214.0 mgd

Impact fee eligible allocation for Middle Service Area is 25.3%

- $Allocation = \frac{Study\ Period\ Demand}{Total\ Available\ Capacity}$
- Allocation = $\frac{54.1 \, mgd}{214.0 \, mgd}$ = 25.3%

Low Service Area Study Period Requirement

- 2018 MHD = 121 gpcd * 3.31 * 1,167,848 = 467.7 mgd
- 2028 MHD = 121 gpcd * 3.31 * 1,355,336 = 542.8 mgd
- Study Period Demand = 542.8 mgd 467.7 mgd = **75.1 mgd**

Total available capacity for Low Service Area is 56.8 mgd

- $2018 \ Capacity = 521.0 \ mgd$
- Existing Available Capacity = 2018 Capacity 2018 MHD
- Existing Available Capacity = 521.0 mgd 467.7 mgd = 53.3 mgd
- Future CIP Capacity = 3.5 mgd
- Total Available Capacity = Existing Available Capacity + Future CIP Capacity
- Total Available Capacity = 53.3 mgd + 3.5 mgd = 56.8 mgd

Impact fee eligible allocation for Low Service Area is 100%

•
$$Allocation = \frac{Study\ Period\ Demand}{Total\ Available\ Capacity}$$

• Allocation =
$$\frac{75.1 \, mgd}{56.8 \, mgd}$$
 = 132.2%

Water Delivery / System Development Components

Well Pumps

Elevated Storage Tanks

Transmission Mains

Ground Storage Tanks

High Service and Booster Pump Stations

Water Delivery / System Development Value – Transmission Mains

Existing value of transmission mains is **\$64,207,721**

- Valuation method is Original Cost (OC)
- Value is not depreciated
- Value excludes contributed assets

Value of transmission mains CIP projects is \$123,753,410

- Value is in 2018 dollars
- Value does not include financing costs

Allocation of Water Delivery / System Development / Transmission Mains Value to Impact Fee

Allocation is based on allocation of pump stations (MHD)

- High Service Area = 16.0%
- Middle Service Area = 25.3%
- Low Service Area = 100%

Water Delivery / System Development CIP – Eligible Value

Component	Service Area	Total Cost	Eligible %	Eligible Cost*
Pump Stations	High	\$ 9,690,234	16.0%	\$ 1,551,807
	Middle	53,312,519	25.3%	13,466,844
	Low	14,614,629	100%	14,614,629
Ground Storage	High	3,874,363	0.5%	19,863
	Middle	47,143,485	3.2%	1,488,835
	Low	29,504,009	6.4%	1,882,513
Elevated Storage	High	15,749,953	12.7%	2,004,684
	Middle	23,572,686	21.4%	5,042,643
	Low	31,770,484	22.4%	7,111,286
Well Pumps	All	48,265,475	42.5%	20,490,786
Transmission	High	26,249,982	16.0%	4,203,708
	Middle	102,413,739	25.3%	25,869,906
	Low	15,567,758	100%	12,708,826
TOTAL		\$ 421,729,316	26.2%	\$ 110,456,330

^{*} Costs shown do not include financing charges.

